
Timeouts: Understanding and
applying absolute and relative

methods

Working with timers in applications – especially in Lua environments such as
Emilua – understanding the difference between absolute timeout and relative
timeout is essential for controlling task execution with precision. This
distinction is reminiscent of the differentiation found in linguistics, where
"Absolute tense situates events in a fixed timeline, while relative tense expresses
temporal relations relative to the moment of speaking". This analogy helps us
understand that, just like in language, timeout methods have distinct
approaches to managing time.

1. Basic concepts

Absolute timeout
In an absolute timeout, you define a fixed point in time when an operation should expire. This
method is ideal when a task must occur at a specific time, regardless of any delays in execution.
Much like absolute tense in linguistics, the event is placed on an immutable timeline.

Relative timeout
In a relative timeout, the expiration is defined as a time interval from the current moment – that
is, time is measured relative to the moment of execution. This approach is practical for recurring

Table of Contents
1. Basic concepts . 1

Absolute timeout . 1

Relative timeout . 1

2. The problem of jitter in relative timeouts . 2

3. Practical example: Relative timeout . 2

Relative timeout: Output example . 2

4. Practical example: Absolute timeout . 3

Absolute timeout: Output example . 3

5. Comparison between absolute and relative timeouts . 4

Final considerations. 4

1

tasks, although minor delays may accumulate if previous executions take longer than expected.
This concept is similar to relative tense in language, which describes events based on the current
moment.

2. The problem of jitter in relative timeouts
When using a relative timeout, small delays in each iteration (for example, due to I/O operations or
additional processing time) can accumulate over multiple cycles, leading to jitter. This means the
actual elapsed time drifts away from the expected schedule.

Below is an example of a relative timeout in Emilua. Notice that even though the code asks for 1
second per iteration, slight variations may lead to a progressive difference between expected and
actual timing.

3. Practical example: Relative timeout

local time = require 'time'

local timer = time.steady_timer.new()
local start_time = time.steady_clock.now()
local i = 0

while true do
 i = i + 1

 timer:expires_after(1)
 timer:wait()

 local current_time = time.steady_clock.now()
 local elapsed = current_time - start_time

 local formatted_message = format("Iteration {0} completed after {1:.3f} seconds", i,
elapsed)
 print(formatted_message)
end

Relative timeout: Output example
Due to the nature of relative timeouts, minor delays may accumulate over iterations. Thus, the
output might be something like:

Iteration 1 completed after: 1.000 seconds
Iteration 2 completed after: 2.012 seconds
Iteration 3 completed after: 3.018 seconds
Iteration 4 completed after: 4.025 seconds

2

Even though each cycle attempts to wait 1 second, occasional delays (e.g., in the print execution or
the wait itself) can cause slight deviations that add up over time.

4. Practical example: Absolute timeout
To address jitter, an absolute timeout defines a fixed point in time at which each iteration should
complete. This way, the timer remains synchronized with an initial reference, rather than shifting
each subsequent iteration based on the last.

local time = require 'time'

local start_time = time.steady_clock.now()
local timer = time.steady_timer.new()

local i = 0
while true do
 i = i + 1

 timer:expires_at(start_time + i)
 timer:wait()

 local current_time = time.steady_clock.now()
 local elapsed = current_time - start_time

 local formatted_message = format("Iteration {0} completed after {1:.3f} seconds", i,
elapsed)
 print(formatted_message)
end

Absolute timeout: Output example
Assuming there are no unexpected delays, the output might be:

Iteration 1 completed after 1.000 seconds
Iteration 2 completed after 2.000 seconds
Iteration 3 completed after 3.000 seconds
Iteration 4 completed after 4.000 seconds

In this approach, the timer remains synchronized with the fixed point, ensuring each iteration
occurs exactly at the expected time.

3

5. Comparison between absolute and
relative timeouts
Aspect Absolute timeout Relative timeout

Definition Fixed point in time (e.g., start_time + i
seconds)

Time interval (e.g., wait 1 second)

Precision Maintains synchronization with an
exact schedule

May accumulate delays if each
iteration takes too long

Ideal use Precise scheduling (e.g., daily events) Recurring tasks without strict
alignment

Output example Iteration 1: 1.000 s; Iteration 2: 2.000 s;
…

Iteration 1: 1.000 s; Iteration 2: 2.012 s;
…

Final considerations
The choice between absolute timeout or relative timeout depends on the context and specific
timing requirements. Below is an enhanced summary of the characteristics of each approach:

Absolute timeout

• Advantages:

• Ensures operations occur at fixed points on the timeline;

• Ideal for precise scheduling (e.g., daily tasks at specific times).

• Ideal Output:

• Each iteration shows an elapsed time exactly as expected (1s, 2s, 3s, etc.).

Relative Timeout

• Advantages:

• Simple to implement for recurring tasks;

• Each cycle resets the count from the current moment.

• Disadvantages:

• Minor delays can accumulate, causing divergence between expected and actual elapsed
time.

• Example Output:

• Iteration 1: 1.000 s; Iteration 2: 2.012 s; Iteration 3: 3.018 s; Iteration 4: 4.025 s.

 Just as linguistic concepts of time allow us to situate events absolutely or relatively,

4

timeout methods provide distinct strategies for managing time. The choice of
method should be determined by the context in which they are applied.

5

	Timeouts: Understanding and applying absolute and relative methods
	Table of Contents
	1. Basic concepts
	Absolute timeout
	Relative timeout

	2. The problem of jitter in relative timeouts
	3. Practical example: Relative timeout
	Relative timeout: Output example

	4. Practical example: Absolute timeout
	Absolute timeout: Output example

	5. Comparison between absolute and relative timeouts
	Final considerations

